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The concept of Krasovskii stability is introduced. The criterion of Krasovskii instability for time-dependent linearizations is 
obtained. This criterion is compared with Chetayev’s theorem. 0 2002 Elsevier Science Ltd. All rights reserved. 

The theory of stability in the first approximation for time-dependent aperiodic linearizations has now been well 
developed [l-9]. Many methods of investigation and results on different types of stability: Lyapunov stability, 
asymptotic stability and exponential stability, are described in these references. 

The situation is quite different with instability criteria. Here, only one result is widely known: Chetayev’s theorem 
on instability in the first approximation [lo, 61. 

It must be pointed out that interest in problems of instability has been stimulated by the study of strange attractors 
and the chaotic dynamics of non-linear systems [ll-141. As a rule, linearization along most trajectories belonging 
to a strange attractor is time-dependent and aperiodic and has a positive Lyapunov exponent. 

Another important sphere of application of instability criteria is control theory, where use is often made of time- 
dependent inverse relations [15,16]. Here, non-linearities are not always differentiable. Therefore, only requirements 
of continuity in the neighbourhood of the trivial solution will be imposed here. 

Consider the system 

dxldr = F(t,x), 130, XER” (1) 

where F(t, x) is a continuous vector function such that F(t, 0) = 0. 
By slightly extending the concept of exponential stability [7,8] for the case of a zero exponent, we will introduce 

the following definition. 

Definition. The trivial solution x(t) = 0 of system (1) will be termed Krasovskii stable if numbers R and E exist 
such that, for any solution x(t, to, x0) with the initial data 1x0 ( s e, the following criterion is satisfied 

ix(r,ru*Xu)l~RIXo I, Vr*rrJ (2) 

where ]x 1 is the Euclidean norm of the vector X, x(t,, to, x0) = x0. 
Note that the number R does not depend on the choice of the vector x0 from the sphere { ]x( G E}. If R is 

independent of the choice of t0 E [0, +-I, we will speak of uniform Krasovskii stability. 
The obvious relations between property (2) and Lyapunov stability have been discussed in [4, p. 231. Note that 

many classical criteria of Lyapunov stability [l-9] are also criteria of Krasovskii stability. 
We will examine the system 

dxldf =A(t)x+f(r.x). r30, XEW” (3) 

where A(t) is a continuous n x n matrix bounded in [0, +-). We will assume that the vector function f(t, x) is 
continuous, and that in a certain neighbourhood U(0) of the point x = 0 the following inequality is satisfied 

1fkX)I~XIXI”. v’rao, vxEU(o); 00, v> I (4) 

We will introduce into consideration the fundamental matrix Z(t) = (z,(t), . . . , z,,(f)) composed of linearly 
independent solutions zj(t) of the system 

dzldr = A (t)z 
(5) 

Theorem. If the inequality 

sup lim 1 
k [( I-_)-+oo f 

I([)- C Inlzi(f)I >O, IW=i trA(WT 
j+k 0 

(6) 
is satisfied, then the solution x(t) = 0 of system (3) is Krasovskii unstable. 
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Proof. We will assume that to = 0 and carry out Schmidt’s orthogonalization procedure 

q 0) 
u1 O)=z,O). u:!(l)=Z2(t)-q (I)*z*w----- 

I q 0) I 
2, ... 

UI 0) . ..) u,(f)=z,(I)-u,(r)*z,(f)---...-u 
I UI (0 I2 

n_, 0)*2,(I) %-’ @) 
Iu,-I ON2 

These relations lead to the equations 

Ui(l)* Uj (l)=O, V~#i; IUj (1)12=Uj (r)‘Zj(r) 

The latter equation implies the criterion 

I”j~f)I~lZj(~) (7) 

We will introduce into consideration the unitary matrix 

U(r) = 
( 

ut (‘) u, 0) -, . . ..- 
IUI WI Iu,Wl 

and make the replacement x = U(t)y in system (3) 

dyldt = B(r)y + gtr. y) (8) 
where 

B(t) = U(r)-’ A(r)U(r)- U(r)-’ o(r), g(r,y) = U(r)-’ f(r,U(r)y) 

It is well known [8] that B(t) is an upper triangular matrix with diagonal elements bjj(t) satisfying the condition 

I u 0) I JOE; bi(z)d7= In’ 
0 I”j to)1 (9) 

Note that, by virtue of the orthogonalization process, the following relation is satisfied 

Z(f) = U(rXZt) 

where Q(t) is an upper triangular matrix with diagonal elements 1 Uj(t) I. Therefore, the following identity holds 

,$, I Uj 0) l=I det Z(r) l=I det Z(O) I exp I(r) 

From this and relations (7) and (9), we obtain the criterion 

J ,,crIa,n Ide~~Wl evM) 
JJ II lzi(r)llzj(o)l 

=I(!)- ): InIzi(t)l-Inlzj(0)l+lnIdetZ(O)I 
i+j 

i#j 

(10) 

Maintaining generality, in condition (6) it is possible to consider that a supremum is reached when k = n. 
Therefore, relations (6) and (10) indicate the existence of a number u > 0 such that, for sufficiently large t, the 
criterion 

J,,(rPut (11) 

is satisfied. From the last equation of system (8) 

Y, = b,,U)Y, +s,(fVY) 

we obtain the equation 

yn(t)=expJ,,(t) y,(O)+j 
i 

(exp(-J,,(r))g,(7.Y(t))dT 
1 

(12) 
0 

Assuming that criterion (2) is satisfied, from condition (4) and orthogonal&y U(t) we obtain the relation 
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I g&y(r)) Is xR” I ~(0) I” (13) 

Note that criterion (11) indicates the existence of a number p for which the following inequality is satisfied 

(14) 

We will now select the initial datay(0) such that y,(O) = ]y(O) 1 = 6 and the number 6 satisfies the relations 

AGE, G>pxR”8” (15) 

The existence of a number 6 satisfying the second inequality of (15) follows from the condition v > 1. 
From formula (12) criterion (11) and inequalities (13)-(15) we obtain the relation 

lim y,(t)=+- 
t-b+- 

This contradicts the assumption that inequality (2) IS satisfied. Consequently, the solution x(t) = 0 is Krasovskii 
unstable. The theorem is proved. 

Remarks. 1. In fact, a slightly stronger result has been proved: if condition (6) is satisfied, the following criterion 
cannot occur 

Ix(r.r,,,~~)I~Rl~~l~, Vfafo 

where a is any positive number satisfying the inequality 

a>+ 

2. Conditions (4) and (6) are less restricting than the conditions of Chetayev’s theorem [lo] concerning Lyapunov 
instability. However, a weaker claim has been proved here - Krasovskii instability. The question of Lyapunov 
instability under conditions (4) and (6) remains open. 
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